Memoria RAM

MEMORIA RAM
Definición:
RAM son las siglas de random access memory, un tipo de memoria de ordenador a la que se puede acceder aleatoriamente; es decir, se puede acceder a cualquier byte de memoria sin acceder a los bytes precedentes. La memoria RAM es el tipo de memoria más común en ordenadores y otros dispositivos como impresoras.
En la RAM se cargan todas las instrucciones que ejecuta la unidad central de procesamiento (procesador) y otras unidades del computador.
Se denominan «de acceso aleatorio» porque se puede leer o escribir en una posición de memoria con un tiempo de espera igual para cualquier posición, no siendo necesario seguir un orden para acceder (acceso secuencial) a la información de la manera más rápida posible.
Durante el encendido de la computadora, la rutina POST verifica que los módulos de RAM estén conectados de manera correcta. En el caso que no existan o no se detecten los módulos, la mayoría de tarjetas madres emiten una serie de sonidos que indican la ausencia de memoria principal. Terminado ese proceso, la memoria BIOS puede realizar un test básico sobre la memoria RAM indicando fallos mayores en la misma.
Tipos de memoria RAM
·         RAM dinámica (DRAM)
·         NVRAM (non-volatile random access memory), memoria de acceso aleatorio no volátil
·         MRAM (magnetoresistive random-access memory), memoria de acceso aleatorio magnetorresistiva o magnética.
·          
·         RAM estática (SRAM)
·         DRAM Asincrónica (Asynchronous Dynamic Random Access Memory, memoria de acceso aleatorio dinámica asincrónica)
·         FPM RAM (Fast Page Mode RAM)
·         EDO RAM (Extended Data Output RAM)
·         SDRAM (Synchronous Dynamic Random-Access Memory, memoria de acceso aleatorio dinámica sincrónica)
·         Rambus:
·         RDRAM (Rambus Dynamic Random Access Memory)
·         XDR DRAM (extreme Data Rate Dynamic Random Access Memory)
·         XDR2 DRAM (extreme Data Rate two Dynamic Random Access Memory)
·         SDR SDRAM (Single Data Rate Synchronous Dynamic Random-Access Memory, SDRAM de tasa de datos simple)
·         DDR SDRAM (Double Data Rate Synchronous Dynamic Random-Access Memory, SDRAM de tasa de datos doble)
·         DDR2 SDRAM (Doublé Data Rate type two SDRAM, SDRAM de tasa de datos doble de tipo dos)
·         DDR3 SDRAM (Double Data Rate type three SDRAM, SDRAM de tasa de datos doble de tipo tres)
·         DDR4 SDRAM (Double Data Rate type four SDRAM, SDRAM de tasa de datos doble de tipo cuatro)
Los dos tipos de memoria RAM se diferencian en la tecnología que utilizan para guardar los datos, la memoria RAM dinámica es la más común.
La memoria RAM dinámica necesita actualizarse miles de veces por segundo, mientras que la memoria RAM estática no necesita actualizarse, por lo que es más rápida, aunque también más cara. Ambos tipos de memoria RAM son volátiles, es decir, que pierden su contenido cuando se apaga el equipo.
Coloquialmente
Coloquialmente el término RAM se utiliza como sinónimo de memoria principal, la memoria que está disponible para los programas, por ejemplo, un ordenador con 8M de RAM tiene aproximadamente 8 millones de bytes de memoria que los programas puedan utilizar.

HISTORIA
Uno de los primeros tipos de memoria RAM fue la memoria de núcleo magnético, desarrollada entre 1949 y 1952 y usada en muchos computadores hasta el desarrollo de circuitos integrados a finales de los años 60 y principios de los 70. Esa memoria requería que cada bit estuviera almacenado en un toroide de material ferro magnético de algunos milímetros de diámetro, lo que resultaba en dispositivos con una capacidad de memoria muy pequeña. Antes que eso, las computadoras usaban relés y líneas de retardo de varios tipos construidas para implementar las funciones de memoria principal con o sin acceso aleatorio.
En 1969 fueron lanzadas una de las primeras memorias RAM basadas en semiconductores de silicio por parte de Intel con el integrado 3101 de 64 bits de memoria y para el siguiente año se presentó una memoria DRAM de 1024 bytes, referencia 1103 que se constituyó en un hito, ya que fue la primera en ser comercializada con éxito, lo que significó el principio del fin para las memorias de núcleo magnético. En comparación con los integrados de memoria DRAM actuales, la 1103 es primitiva en varios aspectos, pero tenía un desempeño mayor que la memoria de núcleos.
En 1973 se presentó una innovación que permitió otra miniaturización y se convirtió en estándar para las memorias DRAM: la multiplexación en tiempo de la direcciones de memoria. MOSTEK lanzó la referencia MK4096 de 4096 bytes en un empaque de 16 pines, mientras sus competidores las fabricaban en el empaque DIP de 22 pines. El esquema de direccionamiento se convirtió en un estándar de facto debido a la gran popularidad que logró esta referencia de DRAM. Para finales de los 70 los integrados eran usados en la mayoría de computadores nuevos, se soldaban directamente a las placas base o se instalaban en zócalos, de manera que ocupaban un área extensa de circuito impreso. Con el tiempo se hizo obvio que la instalación de RAM sobre el impreso principal, impedía la miniaturización, entonces se idearon los primeros módulos de memoria como el SIPP, aprovechando las ventajas de la construcción modular.
A finales de los 80 el aumento en la velocidad de los procesadores y el aumento en el ancho de banda requerido, dejaron rezagadas a las memorias DRAM con el esquema original MOSTEK, de manera que se realizaron una serie de mejoras en el direccionamiento como las siguientes:

FPM RAM

Fast Page Mode RAM (FPM-RAM) fue inspirado en técnicas como el Burst Mode usado en procesadores como el Intel 486,se implantó un modo direccionamiento en el que el controlador de memoria envía una sola dirección y recibe a cambio esa y varias consecutivas sin necesidad de generar todas las direcciones.
Se fabricaban con tiempos de acceso de 70 ó 60 ns y fueron muy populares en sistemas basados en el 486 y los primeros Pentium.

EDO RAM

Extended Data Output RAM (EDO-RAM) fue lanzada al mercado en 1994 y con tiempos de accesos de 40 o 30 ns suponía una mejora sobre FPM, su antecesora. La EDO, también es capaz de enviar direcciones contiguas pero direcciona la columna que va utilizar mientras que se lee la información de la columna anterior, dando como resultado una eliminación de estados de espera, manteniendo activo el búfer de salida hasta que comienza el próximo ciclo de lectura.

BEDO RAM

Burst Extended Data Output RAM (BEDO-RAM) fue la evolución de la EDO-RAM y competidora de la SDRAM, fue presentada en 1997. Era un tipo de memoria que usaba generadores internos de direcciones y accedía a más de una posición de memoria en cada ciclo de reloj, de manera que lograba un desempeño un 50 % mejor que la EDO. Nunca salió al mercado, dado que Intel y otros fabricantes se decidieron por esquemas de memoria sincrónicos que si bien tenían mucho del direccionamiento MOSTEK, agregan funcionalidades distintas como señales de reloj.
MODULOS DE RAM
Los módulos de RAM son tarjetas o placas de circuito impreso que tienen soldados chips de memoria DRAM, por una o ambas caras.
La implementación DRAM se basa en una topología de circuito eléctrico que permite alcanzar densidades altas de memoria por cantidad de transistores, logrando integrados de cientos o miles de megabits. Además de DRAM, los módulos poseen un integrado que permiten la identificación de los mismos ante la computadora por medio del protocolo de comunicación Serial Presence Detect (SPD).
La conexión con los demás componentes se realiza por medio de un área de pines en uno de los filos del circuito impreso, que permiten que el módulo al ser instalado en un zócalo o ranura apropiada de la placa base, tenga buen contacto eléctrico con los controladores de memoria y las fuentes de alimentación.

TECNOLOGIAS DE MEMORIA RAM

 

SDR SDRAM

Memoria síncrona, con tiempos de acceso de entre 25 y 10 ns y que se presentan en módulos DIMM de 168 contactos. Está muy extendida la creencia de que se llama SDRAM a secas, y que la denominación SDR SDRAM es para diferenciarla de la memoria DDR, pero no es así, simplemente se extendió muy rápido la denominación incorrecta. Los tipos disponibles son:
·         PC66: SDR SDRAM, funciona a un máx. de 66,6 MHz
·         PC100: SDR SDRAM, funciona a un máx. de 100 MHz
·         PC133: SDR SDRAM, funciona a un máx. de 133,3 MHz

RDRAM

Se presentan en módulos RIMM de 184 contactos. Era la memoria más rápida en su tiempo, pero por su elevado costo fue rápidamente cambiada por la económica DDR. Los tipos disponibles son:
·         PC600: RIMM RDRAM, funciona a un máximo de 300 MHz.
·         PC700: RIMM RDRAM, funciona a un máximo de 356 MHz.
·         PC800: RIMM RDRAM, funciona a un máximo de 400 MHz.
·         PC1066: RIMM RDRAM, funciona a un máximo de 533 MHz.
·         PC1200: RIMN RDRAM, funciona a un máximo de 600 MHz.

DDR SDRAM

Memoria síncrona, envía los datos dos veces por cada ciclo de reloj. De este modo trabaja al doble de velocidad del bus del sistema, sin necesidad de aumentar la frecuencia de reloj. Se presenta en módulos DIMM de 184 contactos en el caso de ordenador de escritorio y en módulos de 144 contactos para los ordenadores portátiles.
La nomenclatura utilizada es la siguiente: DDRx-yyyy PCx-zzzz; donde x representa a la generación DDR en cuestión; yyyy la frecuencia aparente o efectiva, en Megaciclos por segundo (MHz); y zzzz la máxima tasa de transferencia de datos por segundo, en Megabytes, que se puede lograr entre el módulo de memoria y el controlador de memoria. La tasa de transferencia depende de dos factores, el ancho de bus de datos (por lo general 64 bits) y la frecuencia aparente o efectiva de trabajo.

DDR2 SDRAM

Las memorias DDR 2 son una mejora de las memorias DDR (Double Data Rate), que permiten que los búferes de entrada/salida trabajen al doble de la frecuencia del núcleo, permitiendo que durante cada ciclo de reloj se realicen cuatro transferencias. Se presentan en módulos DIMM de 240 contactos. Los tipos disponibles son:
·         PC2-3200 o DDR2-400: funciona a un máx de 400 MHz.
·         PC2-4200 o DDR2-533: funciona a un máx de 533,3 MHz.
·         PC2-5300 o DDR2-667: funciona a un máx de 666,6 MHz.
·         PC2-6400 o DDR2-800: funciona a un máx de 800 MHz.
·         PC2-8600 o DDR2-1066: funciona a un máx de 1066,6 MHz.
·         PC2-9000 o DDR2-1200: funciona a un máx de 1200 MHz.

DDR3 SDRAM

Las memorias DDR 3 son una mejora de las memorias DDR 2, proporcionan significantes mejoras en el rendimiento en niveles de bajo voltaje, lo que lleva consigo una disminución del gasto global de consumo. Los módulos DIMM DDR 3 tienen 240 pines, el mismo número que DDR 2; sin embargo, los DIMMs son físicamente incompatibles, debido a una ubicación diferente de la muesca. Los tipos disponibles son:
·         PC3-6400 o DDR3-800: funciona a un máx de 800 MHz.
·         PC3-8500 o DDR3-1066: funciona a un máx de 1066,6 MHz.
·         PC3-10600 o DDR3-1333: funciona a un máx de 1333,3 MHz.
·         PC3-12800 o DDR3-1600: funciona a un máx de 1600 MHz.
·         PC3-14900 o DDR3-1866: funciona a un máx de 1866,6 MHz.
·         PC3-17000 o DDR3-2133: funciona a un máx de 2133,3 MHz.
·         PC3-19200 o DDR3-2400: funciona a un máx de 2400 MHz.
·         PC3-21300 o DDR3-2666: funciona a un máx de 2666,6 MHz.
RELACION CON EL RESTO DEL SISTEMA
La RAM se encuentra en un nivel después de los registros del procesador y de las cachés en cuanto a velocidad.
Los módulos de RAM se conectan eléctricamente a un controlador de memoria que gestiona las señales entrantes y salientes de los integrados DRAM. Las señales son de tres tipos: direccionamiento, datos y señales de control. En el módulo de memoria esas señales están divididas en dos buses y un conjunto misceláneo de líneas de control y alimentación. Entre todas forman el bus de memoria que conecta la RAM con su controlador:
·         Bus de datos: son las líneas que llevan información entre los integrados y el controlador. Por lo general, están agrupados en octetos siendo de 8, 16, 32 y 64 bits, cantidad que debe igualar el ancho del bus de datos del procesador. En el pasado, algunos formatos de módulo, no tenían un ancho de bus igual al del procesador. En ese caso había que montar módulos en pares o en situaciones extremas, de a 4 módulos, para completar lo que se denominaba banco de memoria, de otro modo el sistema no funciona. Esa fue la principal razón para aumentar el número de pines en los módulos, igualando al ancho de bus de procesadores como el Pentium a 64 bits, a principios de los años 1990.
·         Bus de direcciones: es un bus en el cual se colocan las direcciones de memoria a las que se requiere acceder. No es igual al bus de direcciones del resto del sistema, ya que está multiplexado de manera que la dirección se envía en dos etapas. Para ello, el controlador realiza temporizaciones y usa las líneas de control. En cada estándar de módulo se establece un tamaño máximo en bits de este bus, estableciendo un límite teórico de la capacidad máxima por módulo.
·         Señales misceláneas: entre las que están las de la alimentación (Vdd, Vss) que se encargan de entregar potencia a los integrados. Están las líneas de comunicación para el integrado de presencia (Serial Presence Detect) que sirve para identificar cada módulo. Están las líneas de control entre las que se encuentran las llamadas RAS (Row Address Strobe) y CAS (Column Address Strobe) que controlan el bus de direcciones, por último están las señales de reloj en las memorias sincrónicas SDRAM.
Algunos controladores de memoria en sistemas como PC y servidores se encuentran embebidos en el llamado puente norte (North Bridge) de la placa base. Otros sistemas incluyen el controlador dentro del mismo procesador (en el caso de los procesadores desde AMD Athlon 64 e Intel Core i7 y posteriores). En la mayoría de los casos el tipo de memoria que puede manejar el sistema está limitado por los sockets para RAM instalados en la placa base, a pesar que los controladores de memoria en muchos casos son capaces de conectarse con tecnologías de memoria distintas.

Una característica especial de algunos controladores de memoria, es el manejo de la tecnología canal doble o doble canal (Dual Channel), donde el controlador maneja bancos de memoria de 128 bits, siendo capaz de entregar los datos de manera intercalada, optando por uno u otro canal, reduciendo las latencias vistas por el procesador. La mejora en el desempeño es variable y depende de la configuración y uso del equipo. Esta característica ha promovido la modificación de los controladores de memoria, resultando en la aparición de nuevos chipsets (la serie 865 y 875 de Intel) o de nuevos zócalos de procesador en los AMD (el 939 con canal doble , reemplazo el 754 de canal sencillo). Los equipos de gamas media y alta por lo general se fabrican basados en chipsets o zócalos que soportan doble canal o superior, como en el caso del zócalo (socket) 1366 de Intel, que usaba un triple canal de memoria, o su nuevo LGA 2011 que usa cuádruple canal.

No hay comentarios.:

Publicar un comentario